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Canonical Symmetries in the Functional Formalism
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Based on the phase-space generating functional of the Green function, the
canonical Ward identities (CWI) under local, nonlocal, and global transformations
in phase space for a system with a regular and singular Lagrangian have been
derived. The relation of global canonical symmetries to conservation laws at the
quantum level is presented. The advantage of this formulation is that one does
not need to carry out the integration over canonical momenta in a phase-space
path (functional) integral as in the traditional treatment in configuration space.
In general, the connection between global canonical symmetries and conservation
laws in classical theories is no longer preserved in quantum theories. Applications
of our formulation to the non-Abelian Chern±Simons (CS) theory are given, and
new forms for CS gauge-ghost field proper vertices and the quantal conserved
angular momentum of this system are obtained; this angular momentum differs
from the classical one in that one needs to take into account the contribution of
angular momenta of ghost fields.

1. INTRODUCTION

The relation of global symmetries to conservation laws is usually referred
to as the first Noether theorem.(1,2) This theorem says that to each symmetry

of an action integral of the system there corresponds a conserved current.

The second Noether theorem refers to invariance of the action integral

under an infinite continuous group (local symmetry), and this local invariance

implies that there exist differential identities (Noether identities) for such a

system. Noether identities correspond to Ward (or Ward±Takahashi) identities
in quantum theory. Classical Noether theorems and Ward identities are usually

formulated in terms of Lagrange’ s variables in configuration space.(3,4)

The invariance under the continuous group in terms of the canonical

variables in classical theory has been developed in refs. 5±7. Ward identities
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relating the Green function in QED were obtained by Ward(8) and Takahashi.(9)

In the non-Abelian theories their role is played by the so-called generalized

Ward identities, first obtained by Slavnov (10) and Taylor.(11)

Ward identities and their generalization play an important role in modern

quantum field theory. They are useful tools for the renormalization of field

theory and for calculations in practical problems (for example, in QCD).

Ward identities have been generalized to supersymmetry,(12) superstring theo-

ries,(13) and other problems.

All the derivations for Ward identities in the functional (path) integration
method are usually performed by using a configuration-space generating

functional, (14) which is valid for the case where the phase-space path integral

can be simplified by carrying out explicit integration over canonical momenta;

then the phase-space generating functional can be represented in the form of

a path integral only over the coordinates (or field variables) of the expression

containing a certain Lagrangian (or effective Lagrangian) in configuration
space. In the case where the ª massº depends on coordinates(15,16) or on

coordinates and canonical momenta,(17) one obtains an effective Lagrangian

in the configuration-space path integral which shows singularities with a d -

function in both cases. Generally, for a constrained Hamiltonian system with

complicated constraints(18) it is very difficult or even impossible to carry out
the integration over canonical momenta in the phase-space path integral.

Phase-space path integrals are much more fundamental than configura-

tion-space path integrals.(19) The latter provide a Hamiltonian quadratic in

the canonical momenta, whereas the former apply to arbitrary Hamiltonians.

The phase-space form of the path integral is a necessary precursor to the

configuration-space form. The phase-space path integral formalism makes
the symmetries of the system manifest in quantum theories.

The study of symmetry in the path-integration method has a more

important sense. Preliminary discussions of the global and local canonical

symmetry for a quantum system were given in refs. 20 and 21. In the quantum

theories of the Yang±Mills field(22) and the conformal transformation of

quantum fields in gauge theories(23,24) a nonlocal transformation was intro-
duced and some applications given. In present paper, the nonlocal symmetries

in phase space at the quantum level and other problems will be further studied.

The paper is organized as follows. In Section 2, based on the phase-

space generating functional of the Green function, we derive the CWI under

local and nonlocal transformations in phase space for a system with a regular

or singular Lagrangian, respectively. This formulation differs from the tradi-
tional treatment in configuration space in that we do not need to carry out

the integration over canonical momenta in the phase-space path integral. In

Section 3 the CWI for global transformation is also deduced; the relations

among Green functions can be obtained immediately. In Section 4 we find
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the quantum analogue of the first Noether theorem in the canonical formalism

by subjecting the phase-space path integral to an infinitesimal global transfor-

mation of variables along the symmetry direction; the canonical Noether
theorem at the quantum level has been established. In general, the connection

between global symmetries and conservation laws in classical theories(25) is

no longer preserved in quantum theories. In Section 5 the applications of the

theory to the non-Abelian CS theory are given, a new form for CS gauge-

ghost field proper vertices, and the conserved angular momentum at the

quantum level of this system are obtained; this angular momentum differs
from the classical one in that one needs to take into account the contribution

of the angular momenta of ghost fields. The problem of fractional spin for

the non-Abelian CS fields coupled to spinor fields needs further study.

2. CANONICAL WARD IDENTITIES FOR LOCAL AND
NONLOCAL TRANSFORMATIONS

2.1. A System with a Regular Lagrangian

Let us first consider a physical field defined by the field variable w (x)

and the motion of the field described by a regular Lagrangian +( w , w , m ),
w , m 5 - m w 5 - w / - x m , where x 5 (t,

-
x ). The canonical Hamiltonian Hc 5

* d 3x *c 5 * d 3x ( p w Ç 2 +) is a functional of independent canonical variables

w (x) and p (x), where p (x) 5 - +/ - w Ç is a canonical momentum conjugate to

w (x). We adopt the path-integral quantization for the system; the phase-space

generating functional of the Green function in the form of a path (functional)

integral is(26)

Z[J, K ] 5 # $ w $ p exp i H F I p 1 # d 4x (J w 1 K p ) G J (2.1)

where

I p 5 # d 4x +p 5 # d 4x ( p w Ç 2 *c) (2.2)

is the canonical action of the system, and *c is the canonical Hamiltonian
density. Here we have also introduced the exterior source K with respect to

the canonical momentum p , which does not alter the calculation of the Green

function G:

G(x1, x2, . . . , xn) 5
1

i n

d nZ[J, K ]

d J(x1) d J(x2) ? ? ? d J(xn) Z J 5 K 5 0

5 ^ 0 ) T[ w Ã(x1) w Ã(x2) ? ? ? w Ã(xn) ) 0 & (2.3)
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Local gauge invariance is now a central concept in modern field theory,

and nonlocal transformations in field theories also have been introduced.(22 ±24)

First we consider the properties of the generating functional under general
local and nonlocal transformations with the following form of infinitesimal

transformation in extended phase space:

5
x m 8 5 x m 1 D x m 5 x m 1 R m

s e s (x)

w (x8) 5 w (x) 1 D w (x) 5 w (x) 1 A s e s (x) 1 # d 4x E(x, y)B s (y) e s (y)

p 8(x8) 5 p (x) 1 D p (x) 5 p (x) 1 U s e s (x) 1 # d 4y F(x, y)V s (y) e s (y)

(2.4)

where E(x, y) and F(x, y) are some functions, and R m
s , A s , B s , U s , and V s

are linear differential operators,

R m
s 5 r m (l)

s - m (l), A s 5 a(m)
s - (m), B s 5 b(n)

s - (n), U s 5 u( p)
s - ( p)

l mo o
V s 5 v(q)

s - (q), r m (l)
s 5 rm n ? ? ? l , a s

( m) 5 am n ? ? ? r , etc.
(2.5)

s s

where r m (l )
s , a(m)

s , b(n)
s , u( p)

s , and v(q)
s are functions of x, w , and p , e s (x) ( s 5

1, 2, . . . , s) are arbitrary infinitesimal functions, and their values and deriva-

tives up to the required order vanish on the boundary of the space-time

domain. The variation of the canonical action (2.2) under the transformation

(2.4) is given by(18)

D I p 5 # d 4x H d I p

d w
d w 1

d I p

d p
d p

1 - m [( p w Ç 2 *c) D x m ] 1 D( p d w ) J (2.6)

where D 5 d/dt, and

d I p

d w
5 2 p Ç 2

d Hc

d w
,

d I p

d p
5 w Ç 2

d Hc

d p
(2.7)

d w 5 D w 2 w , m D x m , d p 5 D p 2 p , m D x m (2.8)



Canonical Symmetries in the Functional Formalism 1681

The Jacobian of the transformation (2.4) is denoted by J[ w , p , e ]. The

generating functional (2.1) is invariant under the transformation (2.4), which

implies that d Z/ d e s ) e s 5 0 5 0. We substitute (2.4) and (2.6)±(2.8) into (2.1),
integrate by parts corresponding terms, then functionally differentiate the

results with respect to e s (x) and set J 5 K 5 0, according to the boundary

conditions of the functions e s (x); we obtain(27)

# $ w $ p H J 0
s 1 AÄ s (z) 1 d I p

d w (z) 2 1 UÄ s (z) 1 d I p

d p (z) 2
2 RÄ ms (z) F w , m (z)

d I p

d w (z)
1 p , m (z)

d I p

d p (z) G
1 # d 4x BÄ s (z) F E(x, z)

d I p

d w (x)
1 D( p (x)E(x, z)) G

1 # d 4x VÄ s F F(x, z)
d I p

d p (x) G J exp(iI p) 5 0 (2.9)

where

J 0
s 5 2 i

d J[ w , p , e ]

d e s (z) Z e s 5 0

and AÄ s , BÄ s , RÄ m
s , UÄ s , and VÄ s are adjoint operators with respect to A s , B s ,

R m
s , U s , and V s , respectively.(28) In deriving (2.9) we used the condition

J[ w , p , 0] 5 1. The Green function connected with (2.9) is given by

^ 0 ) T* H J 0
s 1 AÄ s (z) 1 d I p

d w (z) 2 1 UÄ s (z) 1 d I p

d p (z) 2
2 RÄ ms (z) 1 w , m (z)

d I p

d w (z)
1 p , m (z)

d I p

d p (z) 2
1 # d 4x F BÄ s (z) 1 E(x, z)

d I p

d w (x)
1 D( p (x)E(x, z)) 2

1 VÄ s (x, z) 1 F(x, z)
d I p

d p (x) 2 G J ) 0 & ) p 5 - +/ - w Ç 5 0 (2.10)
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where the symbol T* stands for the covariantized T product,(14) and ) 0 & is

the vacuum state of the fields.

Substituting (2.4) and (2.6)±(2.8) into (2.1) and functionally differentiat-
ing the generating functional with respect to e s (x), we obtain

H J 0
s 1 AÄ s (z) 1 d I p

d w (z) 2 1 UÄ s (z) 1 d I p

d p (z) 2 2 RÄ ms (z) F w , m (z) 1 d I p

d w (z)
1 J(z) 2

1 p , m (z) 1 d I p

d p (z)
1 K(z) 2 G 1 # d 4x F BÄ s (z) 1 E(x, z) 1 d I p

d w (x)
1 J(x) 2

1 D( p (x)E(x, z)) 1 VÄ s (z)F(x, z) 1 d I p

d p (x)
1 K(x) 2 G J Z w ® (1/i) d / d J

p ® (1/i) d / d K

Z[J, K ] 5 0

(2.11)

Expression (2.11) is the canonical Ward identity (CWI) for local and nonlocal

transformations. In the case of a local transformation (E 5 F 5 0), the

Jacobian of the corresponding transformation is independent of e s (x), which
implies that J 0

s 5 0, and from (2.11) we have

F AÄ s 1 d I p

d w 2 2 RÄ ms 1 w , m
d I p

d w 2 1 UÄ s 1 d I p

d p 2 2 RÄ ms 1 p , m
d I p

d p 2
1 AÄ s J 2 RÄ ms ( w , m J) 1 UÄ s K 2 RÄ ms ( p , m K) G w ® (1/i) d / d J

p ® (1/i) d / d K

Z[J, K ] 5 0 (2.12)

When we functionally differentiate expression (2.11) or (2.12) with respect

to the exterior source J, we obtain another CWI. If we replace p by - +/ - w Ç
in (2.11) or (2.12), these CWI can be expressed in terms of variables in

configuration space, and we can obtain relations among the Green functions

in which we do not need to carry out the integration over the canonical
momenta in the phase-space generating functional (2.1).

2.2. A System with a Singular Lagrangian

Let us now consider a system with a singular Lagrangian +( w a , w a
, m )

whose Hess matrix H a b 5 - 2+/ - w Ç a - w Ç b is degenerate. Using the Legendre

transformation, one can go over from the Lagrangian description to the

Hamiltonian description, and the motion of the system is described by the

canonial variables, subject to inherent phase-space constraints; this is called

a constrained Hamiltonian system.(18,29 ±31) Let L k( w a , p a ) ’ 0 (k 5 1, 2,
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. . . , K0) be first-class constraints, and u i( w a , p a ) ’ 0 (i 5 1, 2, . . . , I0)

be second-class constraints. The gauge conditions connecting the first-class

constraints are V k (k 5 1, 2, . . . , K0). According to the Faddeev±Senjanovic
path-integral quantization method,(32,33) one can obtain the phase-space gener-

ating functional of a system with a singular Lagrangian as

Z[J, K, h m, j, k, j, k]

5 # $ w a $ p a $ l m $Ca $ p a $Ca $ p a

3 exp H i F I p
eff 1 # d 4x (J a w a 1 K a p a 1 h m l m

1 j aCa 1 ka p a 1 j aCa 1 ka p a G J (2.13)

where

I p
eff 5 # d 4x +p

eff 5 # d 4x (+p 1 +m 1 +gh) (2.14)

+p 5 p a w Ç a 2 *c (2.15)

+m 5 l k L k 1 l l V l 1 l i u i (2.16)

+gh 5 # d 4y [Ck(x){ L k(x), V l(y)}Cl(y) 1 1±2 Ci(x){ u i(x), u j (y)}Cj (y)] (2.17)

and l m 5 ( l k, l l, l i), and Ca(x) and Cb(x) are Grassmann variables; p a(x)

and p b(x) are canonical momenta conjugate to Ca(x) and Cb(x), respectively.

J a , K a , h m, j a, ka, j a, and ka are exterior sources with respect to w a , p a , l m,
Ca, p a, Ca, and p a, respectively, and { , } denotes the Poisson bracket. For

the sake of simplicity, let us denote w 5 ( w a , l m, Ca, Ca), p 5 ( p a , p a, p a),

J 5 (J a , h m, j a, j a), and K 5 (K a , ka, ka); thus, expression (2.17) can be

written as

Z[J, K] 5 # $ w $ p exp H i F I p
eff 1 # d 4x (J w 1 K p ) G J (2.18)

For a system with a singular Lagrangian, one can still proceed in the

same way as with a regular Lagrangian to deduce the CWI under local and

nonlocal transformations in phase space, but in this case one must use I p
eff

instead of I p in the expressions (2.1), (2.2), (2.6), (2.7), and (2.9)±(2.12).
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3. CANONICAL WARD IDENTITIES FOR GLOBAL
TRANSFORMATION

Global symmetries such as Lorentz invariance, conformal symmetry,

BRS and BRST invariance, supersymmetry, Siegel invariance,(34) etc., play an

important role in field theories.(35) Here we further study the global canonical

symmetry at the quantum level for a system with a singular Lagrangian.

Let us now consider an infinitesimal global transformation in extended
phase space,

5
x m 8 5 x m 1 D x m 5 x m 1 e s t m s (x, w , p )

w 8(x8) 5 w (x) 1 D w (x) 5 w (x) 1 e s j s (x, w , p )

p 8(x8) 5 p (x) 1 D p (x) 5 p (x) 1 e s h s (x, w , p )
(3.1)

where e s ( s 5 1, 2, . . . , r) are infinitesimal arbitrary parameters, and t m s ,

j s , and h s are functions of x, w (x), and p (x). The variation of the effective
canonical action (2.14) is given by(18)

D I p
eff # d 4x e s H 1 2 p Ç 2

d Heff

d w 2 ( j s 2 w , m t m s ) 1 1 w Ç 2
d Heff

d p 2 ( h s 2 p , m t m s )

1 - m [( p w Ç 2 *eff) t m s ] 1 D[ p ( j s 2 w , m t m s )] J (3.2)

where Heff 5 * d 3x *eff is an effective Hamiltonian connected to the effective

Lagrangian Lp
eff 5 * d 3x +p

eff. It is supposed that the Jacobian of the transforma-

tion (3.1) is equal to unity, and the generating functional (2.18) is invariant

under the transformation (3.1); thus we have

Z[J, K] 5 # $ w $ p H 1 1 i D Ip
eff 1 i e s # d 4x [J( j s 2 w , m t m s )

1 K( h s 2 p , m t m s ) 1 - m [(J w 1 K p ) t m s G J w ® (1/i) d / d J
p ® (1/i) d / d K

Z[J, K] 5 0

(3.3)

Therefore, the phase-space generating functional (2.18) satisfies

# d 4x H 1 2 p Ç 2
d Heff

d w 2 ( j s 2 w , m t m s ) 1 1 w Ç 2
d Heff

d p 2 ( h s 2 p , m t m s )

1 - m [( p w Ç 2 *eff) t m s ] 1 D[ p ( j s 2 w , m t m s )]
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1 J( j s 2 w , m t m s ) 1 K( h s 2 p , m t m s )

1 - m [(J w 1 K p ) t m s ] J
w ® (1/i) d / d J
p ® (1/i) d / d K

Z[J, K] 5 0 (3.4)

If the effective canonical action (2.14) is invariant under the transformation

(3.1), then the generating functional (2.18) satisfies

# d 4x H J 1 j s 2 t m s - m
d
d J 2 1 K 1 h s 2 t m s - m

d
d K 2

1 - m F t m s 1 J
d
d J

1 K
d

d K 2 G J w ® (1/i) d / d J
p ® (1/i) d / d K

Z[J, K] 5 0 (3.5)

Expressions (3.4) and (3.5) are the CWI for the noninvariant and invariant

systems under the global transformation in extended phase space, respectively.

We functionally differentiate (3.4) or (3.5) with respect to exterior sources

J(x) many times and put exterior sources equal to zero, J 5 K 5 0, to obtain

relationships among the Green functions.

4. GLOBAL CANONICAL SYMMETRIES AND CONSERVATION
LAWS AT THE QUANTUM LEVEL

The global canonical symmetries have been studied(5,7,25) in connection

with the conservation laws in the canonical formalism at the classical level.

Now we study the relation of the global canonical symmetries to the conserva-

tion laws at the quantum level for a system with a singular Lagrangian.
It is supposed that the variation of the effective canonical action (2.14)

under the global transformation (3.1) is given by

d I p
eff 5 e s # d 4x [ - m W m s (x, w , p ) 1 R s (x, w , p )] (4.1)

where W m s and Q s are functions of x and canonical variables w and p .

Now we localize the transformation (3.1) and consider the following local

transformation connected with the transformation (3.1):

5
x m 8 5 x m 1 D x m 5 x m 1 e s (x) t m s (x, w , p )

w 8(x8) 5 w (x) 1 D w (x) 5 w (x) 1 e s (x) j s (x, w , p )

p 8(x8) 5 p (x) 1 D p (x) 5 p (x) 1 e s (x) h s (x, w , p )
(4.2)
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where e s (x) ( s 5 1, 2, . . . , r) are infinitesimal arbitrary functions and their

values and derivatives vanish on the boundary of the space-time domain.

Under the transformation (4.2) the variation of the effective canonical action
(2.14) is given by

d I p
eff 5 # d 4x e s (x) H d I p

eff

d w
( j s 2 w , m t m s ) 1

d I p
eff

d p
( h s 2 p , m t m s )

1 - m [( p w Ç 2 *eff) t m s ] 1 D[ p ( j s 2 w , m t m s )] J
1 # d 4x {( p w Ç 2 *eff) t m s - m e s (x) 1 p ( j s 2 w , m t m s )D e s (x)} (4.3)

Since the variation of the effective canonical action under the global transfor-
mation (3.1) is given by (4.1), then in accord with the boundary conditions

of e s (x), the expression (4.3) can be written as

D I p
eff 5 # d 4x e s (x){ - m [W m s 2 ( p w Ç 2 *eff) t m s ]

2 D[ p ( j s 2 w , m t m s )] 1 R s } (4.4)

Let us suppose tha the Jacobian of the transformation (4.2) is J[ w , p , e ]. The

invariance of the generating functional (2.18) under the transformation (4.2)

implies that

d Z

d t s (x) Z e s (x) 5 0

5 0

Substituting (4.2) and (4.4) into (2.18) and functionally differentiating it with

respect to e s (x), one obtains

# $ w $ p { - m [W m s 2 ( p w Ç 2 *eff) t m s ] 2 D[ p ( j s 2 w , m t m s )] 1 R s 1 J s
0 1 M s }

3 exp H i # d 4x (+p
eff 1 J w 1 K p ) J 5 0 (4.5)

where

J s
0 5 2 i

d J[ w , p , e ]

d e s (x) Z e s (x) 5 0

(4.6)

M s 5 J( j s 2 w , m t m s ) 1 K( h s 2 p , m t m s ) (4.7)



Canonical Symmetries in the Functional Formalism 1687

Functionally differentiating (4.5) with respect to J(x) a total of n times,

one obtains

# $ w $ p ({ - m [W m s 2 ( p w Ç 2 *eff) t m s ] 2 D[ p ( j s 2 w , m t m s )] 1 R s

1 J s
0 1 M s } w (x1) w (x2) ? ? ? w (xn) 2 i o

j
w (x1) ? ? ? w (xj 2 1) w (xj+1) ? ? ? w (xn)

3 N s d (x 2 xj ) exp H i # d 4x (+p
eff 1 J w 1 K p ) J 5 0 (4.8)

where

N s 5 j s 2 w , m t m s (4.9)

Let J 5 K 5 0 in (4.8); one gets

[0 ) T *{ - m [W m s 2 ( p w Ç 2 *eff) t m s ] 2 D[ p ( j s 2 w , m t m s )]

1 R s 1 J s
0 } w (x1) ? ? ? w (xn) ) 0 &

5 i o
j

^ 0 ) T *[ w (x1) ? ? ? w (xj 2 1) w (xj+1) ? ? ? w (xn)N
s ) 0 & d (x 2 xj ) (4.10)

where T * stands for the covariantized T product.(3,14) Fixing t and letting

t1, t2, . . . , tm ® 1 ` , tm+1, tm+2, . . . , tn ® 2 `

and using the reduction formula,(14) we can write equation (4.10) as

^ out, m ) { - m [W m s 2 ( p w Ç 2 *eff) t m s ]

2 D[ p ( j s 2 w , m t m s )] 1 R s 1 J s
0 } ) n 2 m, in & 5 0 (4.11)

Since m and n are arbitrary, we have

- m [W m s 2 ( p w Ç 2 *)eff t m s 2 D[ p ( j s 2 w , m t m s )] 1 R s 1 J s
0 5 0 (4.12)

We take the integral of (4.12) on the 3-dimensional space; if we assume that

the fields have a configuration which vanishes rapidly at spatial infinity, then

using the Gauss theorem, we obtain

D # d 3x [ p ( j s 2 w ,k t k s ) 2 *eff t 0 s 2 W 0 s ] 5 # d 3x (R s 1 J a
0) (4.13)

Consequently, we obtain the following theorem: If an effective Lagrangian

+p
eff [see Eq. (2.14)] in phase space is invariant up to a 4-dimensional diver-

gence term under the global transformation (3.1), i.e., R s 5 0, in (4.1), and

the Jacobian of the corresponding (4.2) is independent of e s (x), J s
0 5 0, then
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there are conserved quantities at the quantum level for such a system with

a singular Lagrangian:

Q s 5 # d 3x [ p ( j s 2 w ,k t k s ) 2 *eff t 0 s 2 W 0 s ] (4.14)

These results hold true for anomaly-free theories. The conserved quantities

(4.14) correspond to the classical conservation laws derived from the canoni-

cal Noether theorem.(36) For a system with a regular Lagrangian, there is no
constraint in phase space for such a system. The generating functional for

this system is given by (2.1). If the canonical action I p is invariant under the

global transformation in phase space and the Jacobian of the corresponding

local transformation is equal to unity, then one can still proceed in the same

way to obtain the quantal conserved quantities, but in this case one must use

*c instead of *eff in expression (4.14). The connection between the symmet-
ries and conservation laws at the quantum level differs from classical theory

in that one must require that the Jacobian of the transformation be equal to

unity. For a system with a singular Lagrangian, the canonical Noether theorem

in classical field theory says that if the canonical action is invariant under a

global transformation in phase space and the constraints (the equations of

motion are determined by those constraints) are invariant under the substantial
variation induced by such a global transformation, then there are conservation

laws at the classical level. In the quantum theory, for the existence of the

conserved quantities (4.14) one needs further to require that the whole con-

straints (including the gauge constraints) are invariant under the corresponding

global transformation in phase space, i.e., the transformation must lie in the
constrained hypersurface , so one can be sure that the effective canonical

action is invariant under such a global transformation, and the Jacobian of

the corresponding transformation is equal to unity. Therefore the relation of

canonical symmetry to conservation laws at the quantum level is different

from the classical case.

The advantage of this formulation is that one does not need to carry out
explicitly the integration over the canonical momenta in the phase-space

generating functional. Thus, this formulation can apply to the more gen-

eral case.

5. NON-ABELIAN CHERN± SIMONS THEORY

Numerous recent work on (2 1 1)-dimensional gauge theories with
Chern±Simons (CS) terms in the Lagrangian have revealed the occurrence

of fractional spin and statistics.(37,38) These quantum theories are frequently

used in condensed matter studies, such as the quantum Hall effect and high-

Tc superconduct ivity.(39) theories with a non-Abelian CS term coupled to
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matter fields have also been studied.(40,41) Now we give some preliminary

applications of the canonical symmetry at the quantum level to non-Abelian

CS theory.

Proper Vertices

We start by considering the following singular Lagrangian density(42):

+ 5 2
1

4
F a

m n F
a m n 1

u
4 p

e m n r 1 - m Aa
n Aa

r 1
1

3
f abcAa

m Ab
n Ac

r 2
1 i c g m D m c 2 m c c (5.1)

describing the matter field c coupled to non-Abelian CS theories in (2 1 1)

dimensions; c 5 c aT a, where the T a are the generators of the gauge group.

D m stands for the covariant derivative, and

F a
m n 5 - m Aa

n 2 - n Aa
m 1 f abcAb

m Ac
n (5.2)

The gauge invariance of the non-Abelian CS term requires the quantization

of the dimensionless u , u 5 n/4 p (n P Z ).(43)

The canonical momenta connected with Aa
m , c a, and c a are denoted by

p m
a , p a, and p a, respectively. The constraints for this model are(42)

L a
1 5 p a

0 ’ 0 (5.3)

u a
1 5 p a 1 i c g 0 ’ 0 (5.4)

u a
2 5 p a ’ 0 (5.5)

L a
2 5 f abc( c b p c 1 p b c c) 1 - i p i

a 2 f abcAb
i p i

c 1
u

4 p
e ij - iA

a
j (5.6)

L a
1 and L a

2 are first-class constraints, u a
1 and u a

2 are second-class constraints.

According to the rule of path-integral quantization following the Fad-
deev±Senjanovic formalism,(32,33) for each first-class constraint, one must

choose a gauge condition. The radiation gauge condition was chosen in ref.

42. However, this gauge condition is not consistent with the equations of

motion of the system because of the existence of the matter field.(30,44) We

choose other gauge conditions to study this problem. Consider the Cou-

lomb gauge

V a
2 5 - iAa

i ’ 0 (5.7)

The consistent requirement of the gauge constraint V a
2 ’ 0, V Ç a

2 ’ 0 implies

another gauge constraint:
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V a
1 5 - i p i

a 1 ¹ 2Aa
0 2 f abcAb

i - iAc
0 ’ 0 (5.8)

It is easy to check that the factor { u a
1, u a

2} is independent of field variables;

thus, one can omit this factor from the generating functional. We have

det{ L a
k(x), V b

l(y)} 5 det M ab
c (5.9)

where

M ab
c 5 ( d ab ¹ 2 2 f abcAc

i - i) d (x 2 y) (5.10)

Since the theory is independent of the gauge, the factor d ( - iAa
i) det M c

ab can

be replaced by d ( - m Aa
m ) det M L

ab,(30,42) where

M ab
L 5 ( d ab - 2 2 f abcAc

m - m ) d (x 2 y) (5.11)

Hence, the phase-space generating functional of the Green function for this

model can be written as

Z[J, K, h , K1, h , K2, z , z , j , X, Y ]

5 # $Aa
m $ p m

a $ c a$ p a

3 $ c a$ p a$C a$C a$ l a
k$ v l

k$ n a
k exp H i # d 3x [I p

eff 1 J m
a Aa

m 1 K a
m p m

a

1 h a c a 1 p aK1 1 c a h a 1 K a
2 p a 1 z aCa 1 C a z a 1 j a

k l a
k 1 X l

k v l
k 1 Y a

k n a
k ] J

(5.12)

where

+p
eff 5 +p 1 +m 1 +gh (5.13)

+p 5 p m
a AÇ a

m 1 p a c Ç a 1 c Ç a p a 2 *c (5.14)

+m 5 n a
k u a

k 1 l a
k L a

k 1 v a
l V a

l ( V a
1 5 V a

1, V a
2 5 - m Aa

m ) (5.15)

+gh 5 C aM ab
L C b 5 2 - m C aDa

b m C b (5.16)

It is easy to verify that the Lagrangian +p 1 +gh is invariant under the

following nonlocal transformation(22,45):
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5
c 8 5 (x) 5 c (x) 1 i e s (x)T s c (x), p 8(x) 5 p (x) 2 i p (x) e s (x)T s

c 8(x) 5 c (x) 2 c (x) e s (x)T s , p 8(x) 5 p (x) 1 i e s (x)T s p (x)

Aa8
m (x) 5 Aa

m (x) 1 Da
s m e s (x), p m 8

a (x) 5 p m
a (x) 1 f ac

s p m
c (x) e s (x)

C a8(x) 5 C a(x) 1 i(T s )ab e s (x)C b(x)

C a8(x) 5 C a(x) 2 iC b(x)(T s )ba e s (x) 1
i

N
- m [C b(x)(T s )ba - m e s (x)]

(5.17)

The last equation of (5.17) can be written as

C a8(x) 5 C a(x) 2 iC b(x)(T s )ba e s (x)

1 # d 3y D 0(x, y) - m [C b(y)(T s )ba - m e s (y)] (5.18)

where

N D 0(x, y) 5 i d (3)(x 2 y) (5.19)

The change of +m up to a divergence term under the transformation (5.17)

is given by

d +m 5 P s ( l , v , n , A, p , . . .) e s (x) (5.20)

where P s are functions of multiplier fields, the CS field, the matter field,

and ghost fields. The invariance of the generating functional (5.12) under
the transformation (5.17) implies that

H J 0
s 1 iP s 1 i h aT s

d
d h a

2 iK a
1T s

d
d K a

1

2 i h aT s
d

d h a 1 iK a
2T s

d
d K a

2

2 i - m J m
s 1 f a

s c J m
a

d
d J m

c

1 f a
s c K a

m
d

d K c
m

1 i z b(T s )ab
d

d z a

2 i z a(T s )ba
d

d z b 1 - m F - m 1 # d 3y z a D 0(x, y) 2 (T s )ba
d

d z b J Z[J, K . . .] 5 0

(5.21)

where J 0
s are independent of the field variables.(22,45) Let Z[J, K, . . .] 5

exp{iW[J, K, . . .]} and use the definition of the generating functional of

proper vertices G [A, p , . . .] which is given by performing a functional

Legendre transformation on W[J, K, . . .],

G [Aa
m , p m

a ,, . . .] 5 W[J m
a , K a

m , . . .] 2 # d 3x (J m
a Aa

m 1 K a
m p m

a 1 ? ? ? ) (5.22)

d W

d J m
a (x)

5 Aa
m (x),

d G
d Aa

m (x)
5 2 J m

a (x) (5.23a)
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d W

d K a
m (x)

5 p m
a (x),

d G
d p m

a (x)
5 2 K a

m (x) (5.23b)

. . . . . .

Thus, the expression (5.21) can be written as

J 0
s 1 iP s 2 i c aT s

d G
d c a 1 i p aTa

d G
d p a

1 i c aT s
d G

d c a

2 i p aT s
d G
d p a

1 i - m
d G
d A s

m
2 f a

s c Ac
m

d G
d Aa

m
2 f a

s c p m
c

d G
d p m

a

2 iC a(T s )ab
d G
d C b 1 iC a(T s )bc

d G
d Cb

2 i - m F - m 1 # d 3y
d G
d C a D 0(x, y) 2 (T s )baC

b G 5 0 (5.24)

Functionally differentiating (5.24) with respect to Aa(x1) and Ab
l (x2) and setting

all fields (including the multiplier fields) equal to zero, one obtains

- m
d 3 G [0]

d A s
m (x) d Aa

n (x1) d Ab
l (x2)

5 if a
r s d (x 2 x1)

d 2 G [0]

d A r
n (x) d Ab

l (x2)
(5.25)

Functionally differentiating (5.24) with respect to C r(x1) and C s(x2) and setting

all fields (including the multiplier fields) equal to zero, one obtains

(T s )rb d (x 2 x1)
d 2 G [0]

d C s(x1) d Cb(x)
2 (T s )sb d (x 2 x2)

d 2 G [0]

d C b(x) d C r(x1)

1 - m
d 3 G [0]

d C s(x2) d C r(x1) d A s
m (x)

1 - m F - m 1 # d 3y
d 2 G [0]

d C a(x) d C r(x1)
D 0(x, y)(T s )as d (x 2 x2) G 5 0 (5.26)

Expressions (5.25) and (5.26) are Ward identities for CS gauge-host field

vertices. This approach to obtaining the Ward identities for proper vertices

has a significant advantage in that one does not need to carry out the integration
over the canonical momenta in the phase-space path integral.

The effective Lagrangian (5.13) is invariant under spatial rotation, and

the Jacobian of the transformation for field variables is equal to unity; from

(4.14) we obtain the quantal conserved angular momentum
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Jlk 5 # d 2x H p i
a 1 xk

- Aa
i

- xl
2 xl

- Aa
i

- xk 2 1 p i
a 1 o lk 2 i n

A n
a 2 i c g 0Slk c

1 p 1 xk
- c
- xl

2 xl
- c
- xk 2 1 Pa 1 xk

- C a

- xl

2 xl
- C a

- xk 2
1 1 xk

- C a

- xl

2 xl
- C a

- xk 2 Pa J (5.27)

where

1 o r s 2 m n

5 g r m g s n 2 g r n g s m (5.28)

Slk 5 1±4 [ g l, g k] (5.29)

and Pa and Pa are canonical momenta with respect to C a and C a, respectively.

From this result we see that the conserved angular momentum at the

quantum level differs from the classical Noether one in that one needs to

take into account the contribution of the angular momentum of ghost fields in
the theories with a non-Abelian Chern±Simons term coupled to matter fields.

Similarly, we can proceed in the same way to study the BRS invariance

in phase space; the Ward identity for the BRS transformation and the BRS-

conserved quantity at the quantum level also can be deduced.

6. CONCLUSION AND DISCUSSION

In this paper we have studied the quantal canonical symmetry properties

for a system with a singular Lagrangian. The path integrals provide a useful

tool. The phase-space path integrals are more fundamental than the configura-

tion-space path integrals. Based on the phase-space generating functional of

the Green function obtained by using the Faddeev±Senjanovic path integral
quantization method for a system with a singular Lagrangian, the canonical

Ward identities under the local and nonlocal transformations in phase space

for a system with a regular/singular Lagrangian are derived, respectively.

The canonical Ward identities for the global transformation in phase space

are also derived. The conservation laws at the quantum level in the canonical

formalism for the global symmetry transformation are also deduced; in the
general case these conservation laws differ from the classical Noether ones.

A significant advantage of this formulation is that one does not need to carry

out the integration over canonical momenta in the phase-space path integral

as in the traditional treatment in configuration space.
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The application of the theory to non-Abelian CS gauge fields coupled

to a spinor field has been presented. The Ward identities for a nonlocal

transformation have been derived. A new form of the Ward identity for
the CS gauge-ghost proper vertices was obtained which differs from the

Ward±Takahashi identity arising from the BRS invariance. The quantal con-

served angular momentum arising from the invariance of spatial rotation was

obtained, and differs from the result derived from the classical Noether

theorem because one needs to take into account the contribution of the angular

momentum of the ghost fields. Recent work (40) has studied the occurrence
of fractional spin for non-Abelian CS theories in the classical case. Whether

the fractional spin properties for non-Abelian CS theories are always valid

at the quantum level needs further study.

For Abelian CS theories in the Coulomb gauge the ghost fields are

absent in the path-integral quantization using the Faddeev±Senjanovic method

for a constrained Hamiltonian system. From expression (4.14), one can obtain
the quantal conserved angular momentum derived from the invariance of

spatial rotation which coincides with the result derived from the classical

Noether theorem.(37,38) Thus, the fractional spin and statistics in Abelian CS

theories are preserved in quantum theories.
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